

- 32. Exponential Growth: The population of River City in the year 1910 was 4200. Assume the population increased at a rate of 2.25% per year.
- a) Estimate the population in 1930.
- b) Predict when the population reached 20,000.

Example 4: Suppose the half-life of a certain radioactive substance is 20 days and there are 5 grams present initially.

- A) Express the amount of the substance remaining as function of time. $y = 5b^{x}$
- B) Find the time when there will be 1 gram of the substance remaining.

Watauga High School has 1200 students. Bob, Carol, Ted and Alice

- $S(t) = \frac{1200}{1+39e^{-19t}}$ start a rumor, which spreads logistically so that $S(t) = \frac{1200}{1+39e^{-0.9t}}$ models the number of students who have heard the rumor by the end of day t.
 - A) How many students have heard the rumor y the end of Day 0.

$$S(0) = \frac{1200}{1+39\bar{e}^{.9(0)}}$$

= $\frac{1200}{40} = 30$ Students

B) How long does it take for 1000 students to hear the rumor?

Use the data in the table and exponential regression to predict Dallas, TX population in 2015.

L ₁	Lz		
1950 🔿	434,462		
1960 10	679,684		
1970 20	844,401		
1980 30	904,599		
1990 40	1,006,877		
2000 50	1,1880,589		

PRE-CALCULUS: by Finney, Demana, Watts and Kennedy Chapter 3: Exponential, Logistic, and Logarithmic Functions 3.3: Logarithmic Functions and their graphs

What you'll Learn About

Changing between Logarithmic and exponential form:

 $b^y = x$

If x > 0, b > 0 and $b \ne 1$, then $y = \log_b x$ if and only if

Properties:

If x > 0, b > 0 b $\neq 1$, and any real number y

- $\log_h 1 = 0$ because $b^0 = 1$
- $\log_b b = 1$ because $b^1 = b$
- $\log_b b^y = y$ because $b^y = b^y$
- $b^{\log_6 x} = x$ because $\log_6 x = \log_6 y$

Find the inverse function for $y = 2^x$

Evaluate the logarithmic expression without using a calculator

a)
$$\log_2 8 =$$

b)
$$\log_3 \sqrt{3} =$$

c)
$$\log_5 \frac{1}{25} =$$

$$d) \log_4 1 =$$

e)
$$\log_{7} 7 =$$

Evaluate the logarithmic expression without using a calculator

a)
$$\log 100 = 2$$

 $\log^{x} = 100$

b)
$$\log \sqrt{10} = \frac{1}{5}$$

$$|0|^{2} = \sqrt{10}$$

$$|0|^{2} = |0|^{1/5}$$

c)
$$\log \frac{1}{100} = -2$$

 $10^{X} = \frac{1}{100}$

d)
$$\ln \sqrt{e} = \frac{1}{2}$$

$$e^{x} = \sqrt{e}$$

$$e^{x} = e^{1/2}$$

e)
$$\ln e^5 = 5$$

$$e^{x} = e^{5}$$

f)
$$\ln \sqrt{e} = \frac{1}{5}$$
 $e^{x} = \sqrt{5}$
 $e^{x} = e^{x}$

Evaluate the logarithmic expression without using a calculator a) $6^{\log_5 11} =$ b) $10^{\log_6 6} =$

Use a calculator to evaluate the logarithmic expression if it is defined and check your result by evaluating the corresponding exponential expression

a)
$$\log 34.5 =$$

b)
$$\log 0.43 =$$

c)
$$\log (-3) =$$

d)
$$ln 23.5 =$$

e)
$$\ln 0.48 =$$

f)
$$ln(-5) =$$

Solve the equation

a)
$$\log x = 3$$

$$10^3 = \times$$

b)
$$\log_2 x = 5$$

Describe how to transform the graph of $y = \ln x$ into the graph of the given function. Sketch the graph by hand.

a)
$$g(x) = \ln(x+2)+1$$

Left 2 up [

- 1) Determine the vertical asymptotes Y=-2

1) Determine the vertical asymptotes

3) Determine the domain and range

- 2) Determine the x-intercept
- 2) Determine the x-intercept
- 3) Determine the domain and range 0: (-2,00)
 - R: (-10,00)
- 4) Intervals of Increase or Decrease Inc (-2,00)
- 4) Intervals of Increase or Decrease
- Determine the end behavior
- 5) Determine the end behavior
- 6) Intervals of Concavity Concave Down

(-2,00)

6) Intervals of Concavity